Plasma membrane surface increases with tonic stretch of alveolar epithelial cells.

نویسندگان

  • Jacob L Fisher
  • Irena Levitan
  • Susan S Margulies
چکیده

Cyclic stretch stimulates numerous responses in alveolar epithelial cells--some beneficial, some injurious--often through mechanosensitive membrane-associated proteins such as stretch-activated ion channels. Tonic stretch, in contrast, stimulates only some of these responses. In this study, we hypothesized that the plasma membranes of alveolar epithelial cells expand during tonic stretch, not only through cell surface unfolding, but also through recruitment of additional phospholipids. Such plasma membrane expansion would reduce membrane tension and decrease stimulation of mechanosensitive membrane proteins. Primary rat alveolar epithelial cells were isolated, cultured for 48 h, and stretched between 3 and 40% change in basal membrane surface area. Gross changes in total cell surface area were obtained from stacks of thin fluorescent confocal micrographs; fine changes in plasma membrane area were measured via whole cell capacitance. A 1:1 correspondence linked changes in basal and total cell surface area, implying that cell surface area change is dominated by stretch of the attached basal surface. We also found that plasma membrane increased proportionally with surface area within 5 min of tonic stretch, showing that, given time to occur, plasma membrane expansion via lipid recruitment preponderates the changes in cell surface shape and size demanded by stretching the cell. Similarly, in cells tonically stretched 10 min to allow lipid insertion and then returned to an unstretched state, reabsorption of excess lipid occurred within 5 min. Finally, we found that lipid insertion induced by tonic stretch was unaffected by F-actin disassembly, ATP depletion, and calcium deprivation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling the effect of stretch and plasma membrane tension on Na+-K+-ATPase activity in alveolar epithelial cells.

While a number of whole cell mechanical models have been proposed, few, if any, have focused on the relationship among plasma membrane tension, plasma membrane unfolding, and plasma membrane expansion and relaxation via lipid insertion. The goal of this communication is to develop such a model to better understand how plasma membrane tension, which we propose stimulates Na(+)-K(+)-ATPase activi...

متن کامل

Modeling the Effect of Stretch and Plasma Membrane Tension on Na+-k+-atpase Activity in Cyclic Stretch of Human Lung Cells Induces an Acidification and Promotes Bacterial Ajp -lung Cellular and Molecular Physiology

[PDF] [Full Text] [Abstract] , July 1, 2004; 97 (1): 269-276. J Appl Physiol S. S. Kay, A. M. Bilek, K. C. Dee and D. P. Gaver III a model of pulmonary airway reopening Pressure gradient, not exposure duration, determines the extent of epithelial cell damage in [PDF] [Full Text] [Abstract] , August 1, 2004; 31 (2): 200-208. Am. J. Respir. Cell Mol. Biol. J. L. Fisher, I. Levitan and S. S. M...

متن کامل

Stretch magnitude and frequency-dependent actin cytoskeleton remodeling in alveolar epithelia.

Alveolar epithelial cells (AEC) maintain integrity of the blood-gas barrier with gasket-like intercellular tight junctions (TJ) that are anchored internally to the actin cytoskeleton. We hypothesize that stretch rapidly reorganizes actin (<10 min) into a perijunctional actin ring (PJAR) in a manner that is dependent on magnitude and frequency of the stretch, accompanied by spontaneous movement ...

متن کامل

Mechanical stretching of alveolar epithelial cells increases Na1-K1-ATPase activity

Waters, Christopher M., Karen M. Ridge, G. Sunio, K. Venetsanou, and Jacob Iasha Sznajder. Mechanical stretching of alveolar epithelial cells increases Na1-K1ATPase activity. J. Appl. Physiol. 87(2): 715–721, 1999.— Alveolar epithelial cells effect edema clearance by transporting Na1 and liquid out of the air spaces. Active Na1 transport by the basolaterally located Na1-K1-ATPase is an importan...

متن کامل

Jamming dynamics of stretch-induced surfactant release by alveolar type II cells.

Secretion of pulmonary surfactant by alveolar epithelial type II cells is vital for the reduction of interfacial surface tension, thus preventing lung collapse. To study secretion dynamics, rat alveolar epithelial type II cells were cultured on elastic membranes and cyclically stretched. The amounts of phosphatidylcholine, the primary lipid component of surfactant, inside and outside the cells,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of respiratory cell and molecular biology

دوره 31 2  شماره 

صفحات  -

تاریخ انتشار 2004